
Branch VPN Solution with OpenBSD

EuroBSDCon, Paris, September 24, 2017

Remi Locherer <remi.locherer@relo.ch>

Branch VPN Solution with OpenBSD

In 2016 we started deploying a new VPN solution for connecting the branch offices of Netcetera.

You might be interested in this presentation if you are a

System Engineer: Learn something about networking.

Network Engineer: See what cool stuff is possible with OpenBSD!

OpenBSD Developer: See how the software you write is beeing used.

I expect to learn from the audience all the things we did wrong ;-).

Who am I?

System and network engineer with Netcetera since 2009.

First OpenBSD release I used: 3.0

First exposure to networking:
10BASE2 Ethernet connecting Apple Quadras in an architects office.

The setup I’m going to present is a joint development with Daniel Stocker.

Situation before

• 4 branch offices connected to HQ

• 4 different platforms

• Cluster with OpenBSD isakmpd and OpenVPN on HP servers

• CentOS with StrongSwan on DELL server

• CentOS with OpenVPN on HP home NAS

• SnapGear appliances with OpenVPN

• Making new networks available to all locations was manual and error prone task

• SnapGears to slow for available bandwidth (and EOL)

Goals for a new setup

• Less manual work

• Less different technologies to manage

• Enough encryption performance for all branch offices (fastest link 100Mbps)

Network setup

• Connect all branch routers to the data center over public Internet.

• IPSEC for confidentiality and integrity

DC

Office BOffice A Office C

IPSEC IPSEC IPSEC

Network setup - Redundancy

• Clustered hubs

• First hop redundancy with CARP

• Redundancy based on routing protocol towards other routers

• Hub in 2nd data center

DC1a DC1b DC2a DC2b

Office
B

Office
A

Office
C

Network setup - Routed IPSEC

• Old setup: more than 200 flows for one branch office!

• Routing to move traffic into the VPN

• Scales better compared to a flow based setup (rekeying)

• Easier to debug

• Faster to make new networks available on all sites

• Routing for redundancy

IPSEC transport mode in combination with tunnel interfaces.

Network setup - tunneling

gre(4): noneed for keepalives
we only need support for IP transport
additional GRE header reduces MTU

etherip(4) wedo not want to transport Ethernet frames

• MTU

• additional L2 traffic

gif(4) IP in IP
same encapsulation as IPSEC tunnel mode
provides an interface that we can use for routing!

Network setup - Routing protocol

Symmetric traffic flow is a requirement: The routers are actually stateful firewalls!

BGP

• Allows us to implement policies.

• Scales to very large network sizes.

OSPF

• Fast convergence.

• In use in the backbone.

• Downsides:

• Every time we loose a link to a branch router all routers recalculate their routes.

• No route filtering: configuration error on a branch router could bring down the hole
company!

Network setup - BGP

• Private AS number per site.

• AS path prepending (dashed line) on link to backup hub router.

DC1a
AS

65101

DC1b
AS

65101

Office B
AS

65103

Office A
AS

65102

Network setup - BGP config branch router

• network (inet|inet6) connected

• 2 neighbors (hub routers)

• announce self

Network setup - BGP config hub router

• network (inet|inet6) rtlabel "fromOSPF"

• neighbor template

• CARP backup: prepend self (AS path prepending)

• ifstated reloads bgpd with changed config depending on carp state

• redistribute bgp routes into ospfd based on route tags

It gets complicated once the branch routers should also connect to the hub in the 2nd data center.

Network setup - OSPF config branch router

• All routers in area 0.

• Branch routers must be stubs.

router-id 192.0.2.90
stub router yes

area 0.0.0.0 {
interface gif8
interface gif9
interface lo1 { passive }
interface vlan331 { passive }
interface vlan500 { passive }

}

Network setup - OSPF config hub router

router-id 192.168.8.85
include "/etc/ospfd.mymetric"
redistribute default set { metric $mymetric type 1 }
redistribute rtlabel toOSPF set metric $mymetric

area 0.0.0.0 {
interface vlan10 { metric $mymetric }

interface gif0 { metric $mymetric }
interface gif2 { metric $mymetric }
interface gif4 { metric $mymetric }
[..]

interface lo1 { passive }

interface carp800 { passive }
interface carp801 { passive }
interface carp870 { passive }
interface carp900 { passive }
interface carp901 { passive }

}

Network setup - Guest network

• Guests are provided with Internet access.

• Guests must not have access to company network.

OpenBSD rdomains provide this separation.

default
rdomain

guest
rdomain

vlan 900 vlan 100

Where should we connect the ISP router?

Network setup - Default route

Local exit for Internet traffic. (Routingall traffic over IPSEC should also be possible.)

• Default route towards ISP for guest rdomain.

• Default route via pair0 for default rdomain.

• NAT on interfaces pair0 and em1

• gif interface: tunnel in guest rdomain!

gif1: flags=8051<UP,POINTOPOINT,RUNNING,MULTICAST> mtu 1420
index 17 priority 0 llprio 3
groups: gif
tunnel: inet 212.3.192.94 -> 194.106.45.42 rdomain 1
inet 192.0.2.20 --> 192.0.2.19 netmask 0xffffffff

default
rdomain 0

guest
rdomain 1

vlan 900 vlan 100

pair0
pair1

em1 ISPgif0 gif1

Network Setup - IPv6

• No RFC1918 addresses

• Own prefixes for default rdomain

• ISP provided prefixes for guest rdomain

• Prefix rewrite on pair0 with pf (nat-to with
bitmask)

Current state:
IPv6 activated for guest network where local
ISP provides IPv6.

default
rdomain 0

guest
rdomain 1

vlan 900 vlan 100

pair0
pair1

em1 ISPgif0 gif1

Network Setup - QOS

For some locations available bandwith is very limited.

• Prefer VoIP

• Limit guests

• Limit not critical flows consuming lot of bandwidth.

Upstream
queue em1 on em1 bandwidth {{ upspeed_max }}
queue em1_voice parent em1 bandwidth 10M, min {{ voice_min }}
queue em1_ipsec parent em1 bandwidth 10M, min {{ ipsec_min }}
queue em1_guest parent em1 bandwidth 10M, max {{ guest_max }}
queue em1_default parent em1 bandwidth 10M, max {{ upspeed_max }} default
Link RD5 to RD0
queue pair5 on pair5 bandwidth {{ downspeed_max }}
queue pair5_apple parent pair5 bandwidth 10M, max {{ apple_max }}
queue pair5_voice parent pair5 bandwidth 10M, min {{ voice_min }}
queue pair5_default parent pair5 bandwidth 10M, max {{ downspeed_max }} default
GuestNetwork
queue vl320 on vlan320 bandwidth {{ downspeed_max }}
queue vl320_default parent vl320 bandwidth 10M, max {{ guest_max }} default

Future: use "flow queue" (aka FQ-CoDel)

Network Setup - QOS

1 users Load 2.05 2.05 2.02 gw-bn75.netcetera.c 13:31:25

QUEUE BWSCH PR PKTS BYTES DROP_P DROP_B QLEN BORR SUSP P/S B/S
em1 on em1 25M 0 0 0 0 0 0 0

em1_voice 10M 209K 75M 0 0 0 0 0
em1_ipsec 10M 0 0 0 0 0 0 0
em1_guest 10M 98M 80G 10150 9919K 0 11 3340
em1_default 10M 299M 92G 113546 99M 0 255 35K

pair5 on pair5 25M 0 0 0 0 0 0 0
pair5_apple 10M 7079K 9G 41745 60950K 0 0 0
pair5_voice 10M 0 0 0 0 0 0 0
pair5_default 10M 138M 167G 0 0 0 325 398K

vl500 on vlan500 25M 0 0 0 0 0 0 0
vl500_voice 10M 0 0 0 0 0 0 0
vl500_default 10M 305M 332G 73 29131 0 247 319K

vl720 on vlan720 25M 0 0 0 0 0 0 0
vl720_voice 10M 0 0 0 0 0 0 0
vl720_default 10M 57M 61G 24694 34791K 0 91 81K

gif8 on gif8 25M 0 0 0 0 0 0 0
gif8_voice 10M 31M 12G 0 0 0 0.2 11
gif8_default 10M 183M 51G 117026 108M 0 65 11K

gif9 on gif9 25M 0 0 0 0 0 0 0
gif9_voice 10M 22 3344 0 0 0 0 0
gif9_default 10M 403K 41M 0 0 0 0 0

Tooling - vnstat

em1 22:56
ˆ r
| r
| r r
| r r
| r r
| r r r r r
| r r r r r
| r r r r r r
| r r r r r r r r
| r r r r r r r r r r r r

-+--->
| 2 3 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 2 2

h r x (MiB) tx (MiB) h rx (MiB) tx (MiB) h r x (MiB) tx (MiB)
23 153.69 105.40 07 360.61 58.23 15 360.35 83.82
00 14.23 17.54 08 1189.40 110.85 16 557.27 108.61
01 14.46 18.21 09 2140.63 181.72 17 217.17 63.57
02 85.25 102.78 10 1154.31 169.26 18 247.94 33.84
03 14.58 18.19 11 836.10 174.68 19 163.70 107.93
04 16.43 19.14 12 562.35 102.52 20 55.45 31.21
05 137.91 95.93 13 1772.91 159.54 21 52.63 30.51
06 52.97 25.06 14 1184.61 106.89 22 46.43 27.34

Automation

Branch routers are completely configured by Ansible:

ansible_host: "213.13.2.90"
dhcrelay: "172.28.74.10"

downspeed_max: "25M"
upspeed_max: "25M"
ipsec_min: "15M"
guest_max: "10M"
voice_min: "10M"

if_lo1_ip: "172.18.0.13/32"
if_em1_ip: "213.13.2.90/29"
if_vlan320_ip: "172.19.48.1/24"
if_vlan331_ip: "172.19.62.1/24"
if_vlan500_ip: "172.19.94.1/24"

name_servers:
- ’ 10.11.11.11’
- ’ 10.22.22.22’

Ansible - Network interfaces

• Ansible uses a template and creates /etc/hostname.if.

• Ansible executes "sh /etc/netstart if".

Benefits: rebootsafe config
easy to write Ansible tasks and templates

Drawback: revealed bugs (carp) ans shortcomings (ospfd)

Ansible - Tunnel configuration
IP a ddresses for tunnels 192.168.1.0 - 192.168.3.255
-> max. 1024 IP’s, max. 512 Tunnels
tun4: "192.168."
tun6: "2001:db8:fff::"

VPN Concentrator (HQ) must be mentioned first !
magictunnel:

0:
peer1: rock
peer2: gw-br47
key: "{{ vault_ipsec_key_0 }}"

1:
peer1: roll
peer2: gw-br47
key: "{{ vault_ipsec_key_1 }}"

- n ame: configure gif for SPOKE
template:

src=hostname.gif.spoke.j2
dest=/etc/hostname.gif{{ item.key }}
owner=root
group=wheel
mode=0640

with_dict: ’{{ magictunnel }}’
when: "{{ inventory_hostname_short == item.value.peer2|lower }}"
register: gif_task_spoke
notify: activate interface config spoke

OS Upgrade

• Upgrade with bsd.rd not an option (no remote access to console).

• Ansible playbook for upgrading

• Delete old binpatches

• Copy install sets to target

• Copy script which performs the actual upgrade

• Copy script for cleanups after the upgrade

• Login and execute upgrade script (does reboot the box).

• Wait 2 min and login again. Execute cleanup script.

Local Originating UDP Traffic

UDP traffic originating local on the VPN gateway might be sent out on the wrong interface after a
route change.

Example:

• Internet connection down

• OSPF adjacency down, right via tunnel gone

• DHCP requests now forwarding using the default route.

• Route via tunnel learned again: traffic does not shift back to tunnel.

Affected services:

• syslog

• ntp

• netflow

• dhcp relay

Workarounds

Syslog

Use TCP instead of UDP.

Other services

A script monitors the routing socket and act upon route changes (simplified):

route -n monitor | while read -r l ; do
if [[$l == *RTM_ADD*]] ; then

rcctl restart ntpd
rcctl restart $(rcctl ls on | grep dhcrelay)
sh /etc/netstart pflow0

fi
done

Could we use an tool similar to ifstated but for route messages?

Filesystem check

OpenBSD does "fsck -p" during boot if needed.

But we have no physical access to remote routers!

- n ame: fix fsck at reboot
replace:

dest=/etc/rc
regexp=’fsck -p’
replace=’fsck -y

Hardware

PC Engines APU2

Gives us a bit more than 100Mb/s with AES128-GCM (measured with OpenBSD 5.9)

HP DL360

Used for OpenBSD in the data center when not a VM. Because it’s the company standard.
OpenBSD runs fine on that hardware.

Conclusion

• This setup is now in production for 8 branch offices.

• It’s not rocket sience - just a combination of available toold.

• We are now fast with rolling out a new office.

• So far we are happy with it!

Questions?

