Branch VPN Solution with OpenBSD

EuroBSDCon, Paris, September 24, 2017 Remi Locherer <remi.locherer@relo.ch>

Branch VPN Solution with OpenBSD

In 2016 we started deploying a new VPN solution for connecting the branch offices of Netcetera.

You might be interested in this presentation if you are a

System Engineer:	Learn something about networking.
Network Engineer:	See what cool stuff is possible with OpenBSD!
OpenBSD Developer:	See how the software you write is beeing used.

I expect to learn from the audience all the things we did wrong ;-).

Who am I?

System and network engineer with Netcetera since 2009.

First OpenBSD release I used: 3.0

First exposure to networking: 10BASE2 Ethernet connecting Apple Quadras in an architects office.

The setup I'm going to present is a joint development with Daniel Stocker.

Situation before

- 4 branch offices connected to HQ
- 4 different platforms
 - Cluster with OpenBSD isakmpd and OpenVPN on HP servers
 - CentOS with StrongSwan on DELL server
 - CentOS with OpenVPN on HP home NAS
 - SnapGear appliances with OpenVPN
- Making new networks available to all locations was manual and error prone task
- SnapGears to slow for available bandwidth (and EOL)

Goals for a new setup

- Less manual work
- Less different technologies to manage
- Enough encryption performance for all branch offices (fastest link 100Mbps)

Network setup

- Connect all branch routers to the data center over public Internet.
- IPSEC for confidentiality and integrity

Network setup - Redundancy

- Clustered hubs
 - First hop redundancy with CARP
 - Redundancy based on routing protocol towards other routers
- Hub in 2nd data center

Network setup - Routed IPSEC

- Old setup: more than 200 flows for one branch office!
- Routing to move traffic into the VPN
 - Scales better compared to a flow based setup (rekeying)
 - Easier to debug
 - Faster to make new networks available on all sites
 - Routing for redundancy

IPSEC transport mode in combination with tunnel interfaces.

Network setup - tunneling

etherip(4) we do not want to transport Ethernet frames • MTU • additional L2 traffic IP in IP same encapsulation as IPSEC tunnel mode provides an interface that we can use for routing	gre(4):	no need for keepalives we only need support for IP transport additional GRE header reduces MTU
 MTU additional L2 traffic IP in IP same encapsulation as IPSEC tunnel mode provides an interface that we can use for routing 	etherip(4)	we do not want to transport Ethernet frames
 • additional L2 traffic gif(4) IP in IP same encapsulation as IPSEC tunnel mode provides an interface that we can use for routing 		• MTU
gif(4)IP in IPsame encapsulation as IPSEC tunnel modeprovides an interface that we can use for routing		additional L2 traffic
	gif(4)	IP in IP same encapsulation as IPSEC tunnel mode provides an interface that we can use for routing

Network setup - Routing protocol

Symmetric traffic flow is a requirement: The routers are actually stateful firewalls!

BGP

- Allows us to implement policies.
- Scales to very large network sizes.

OSPF

- Fast convergence.
- In use in the backbone.
- Downsides:
 - Every time we loose a link to a branch router all routers recalculate their routes.
 - No route filtering: configuration error on a branch router could bring down the hole company!

Network setup - BGP

- Private AS number per site.
- AS path prepending (dashed line) on link to backup hub router.

Network setup - BGP config branch router

- network (inet|inet6) connected
- 2 neighbors (hub routers)
- announce self

Network setup - BGP config hub router

- network (inet|inet6) rtlabel "fromOSPF"
- neighbor template
- CARP backup: prepend self (AS path prepending)
- ifstated reloads bgpd with changed config depending on carp state
- redistribute bgp routes into ospfd based on route tags

It gets complicated once the branch routers should also connect to the hub in the 2nd data center.

Network setup - OSPF config branch router

- All routers in area 0.
- Branch routers must be stubs.

```
router-id 192.0.2.90
stub router yes
area 0.0.0.0 {
    interface gif8
    interface gif9
    interface lo1 { passive }
    interface vlan331 { passive }
    interface vlan500 { passive }
}
```

Network setup - OSPF config hub router

```
router-id 192.168.8.85
include "/etc/ospfd.mymetric"
redistribute default set { metric $mymetric type 1 }
redistribute rtlabel toOSPF set metric $mymetric
area 0.0.0.0 {
          interface vlan10 { metric $mymetric }
          interface gif0 { metric $mymetric
          interface gif2 { metric $mymetric
          interface gif4 { metric $mymetric
          [..]
          interface lo1 { passive }
          interface carp800 {
                             passive
          interface carp801 { passive
          interface carp870 { passive
          interface carp900 { passive
          interface carp901 { passive
```

Network setup - Guest network

- Guests are provided with Internet access.
- Guests must not have access to company network.

OpenBSD rdomains provide this separation.

Where should we connect the ISP router?

Network setup - Default route

Local exit for Internet traffic. (Routing all traffic over IPSEC should also be possible.)

- Default route towards ISP for guest rdomain.
- Default route via pair0 for default rdomain.
- NAT on interfaces pair0 and em1
- gif interface: tunnel in guest rdomain!


```
gif1: flags=8051<UP,POINTOPOINT,RUNNING,MULTICAST> mtu 1420
    index 17 priority 0 llprio 3
    groups: gif
    tunnel: inet 212.3.192.94 -> 194.106.45.42 rdomain 1
    inet 192.0.2.20 --> 192.0.2.19 netmask 0xffffffff
```

Network Setup - IPv6

- No RFC1918 addresses
- Own prefixes for default rdomain
- ISP provided prefixes for guest rdomain
- Prefix rewrite on pair0 with pf (nat-to with bitmask)

Current state: IPv6 activated for guest network where local ISP provides IPv6.

Network Setup - QOS

For some locations available bandwith is very limited.

```
• Prefer VoIP
```

• Limit guests

• Limit not critical flows consuming lot of bandwidth.

```
# Upstream
queue eml on eml bandwidth {{ upspeed_max }}
queue eml_voice parent eml bandwidth 10M, min {{ voice_min }
queue em1_ipsec parent em1 bandwidth 10M, min {{ ipsec_min
queue eml_guest parent eml bandwidth 10M, max {{
                                                  guest_max
                                                  upspeed_max }} default
queue eml_default parent eml bandwidth 10M, max {{
# Link RD5 to RD0
queue pair5 on pair5 bandwidth {{ downspeed_max }}
queue pair5_apple parent pair5 bandwidth 10M, max {{ apple_max }}
queue pair5_voice parent pair5 bandwidth 10M, min {{ voice_min }}
queue pair5_default parent pair5 bandwidth 10M, max {{ downspeed_max }} default
# GuestNetwork
queue v1320 on v1an320 bandwidth {{ downspeed_max }}
queue vl320_default parent vl320 bandwidth 10M, max {{ guest_max }} default
```

Future: use "flow queue" (aka FQ-CoDel)

Network Setup - QOS

1 users Load 2.05 2.05 2.02

gw-bn75.netcetera.c 13:31:25

QUEUE	BW	SCH	PR	PKTS	BYTES	DROP_P	DROP_B	QLEN	BORR	SUSP	P/S	B/S
eml on eml	25M			0	0	0	0	0			0	0
em1_voice	10M			209K	75M	0	0	0			0	0
em1_ipsec	10M			0	0	0	0	0			0	0
em1_guest	10M			98M	80G	10150	9919K	0			11	3340
em1_default	10M			299M	92G	113546	99M	0			255	35K
pair5 on pair5	25M			0	0	0	0	0			0	0
pair5_apple	10M			7079K	9G	41745	60950K	0			0	0
pair5_voice	10M			0	0	0	0	0			0	0
pair5_default	10M			138M	167G	0	0	0			325	398K
v1500 on vlan500	25M			0	0	0	0	0			0	0
vl500_voice	10M			0	0	0	0	0			0	0
vl500_default	10M			305M	332G	73	29131	0			247	319K
v1720 on vlan720	25M			0	0	0	0	0			0	0
vl720_voice	10M			0	0	0	0	0			0	0
vl720_default	10M			57M	61G	24694	34791K	0			91	81K
gif8 on gif8	25M			0	0	0	0	0			0	0
gif8_voice	10M			31M	12G	0	0	0			0.2	11
gif8_default	10M			183M	51G	117026	108M	0			65	11K
gif9 on gif9	25M			0	0	0	0	0			0	0
gif9_voice	10M			22	3344	0	0	0			0	0
gif9_default	10M			403K	41M	0	0	0			0	0

Tooling - vnstat

em	1															22:56
				r r												
				r			r									
				r L			r									
				L r			r									
				r r	r		L Y	r								
					r		L Y	r r								
					T T		T T	T								
					L L	70	L T	T T		70						
				T T	T T	Ţ	T T	T T		Ţ						
			Ľ	r r	r r	Ľ	<u>r</u>	r.	Ľ.	Ľ.	Ţ,	r				
	23 00 01	02 03 04 05	06 07	08 09	10 1	1 12	13	14	15	16	17	18	19	20	21	22
h	rx (MiB)	tx (MiB)	h	rx (M:	iB)	tx	(MiE	3)		h	r	x (1	ИіВ)	tx	(MiB)
23	153.69	105.40	07	360	0.61		58.	23		15		36	50.	, 35		83.82
00	14.23	17.54	08	1189	9.40		110.	85		16		55	57.	27		108.61
01	14.46	18.21	09	214	0.63		181.	.72		17		21	17.	17		63.57
02	85.25	102.78	10	1154	4.31		169.	.26		18		24	47.	94		33.84
03	14.58	18.19	11	830	5.10		174.	68		19		10	53.	70		107.93
04	16.43	19.14	12	562	2.35		102.	52		20		Ę	55.4	45		31.21
05	137.91	95.93	13	177	2.91		159.	54		21		Ę	52.	63		30.51
06	52.97	25.06	14	1184	4.61		106.	.89		22		4	46.4	43		27.34

Automation

Branch routers are completely configured by Ansible:

ansible host: "213.13.2.90" dhcrelay: "172.28.74.10" downspeed_max: "25M" upspeed_max: "25M" ipsec_min: "15M" "10M" guest_max: voice min: "10M" if_lo1_ip: "172.18.0.13/32" if_em1_ip: "213.13.2.90/29" if_vlan320_ip: "172.19.48.1/24" if_vlan331_ip: "172.19.62.1/24" if vlan500 ip: "172.19.94.1/24" name servers:

```
- '10.11.11.11'
- '10.22.22.22'
```

Ansible - Network interfaces

- Ansible uses a template and creates /etc/hostname.if.
- Ansible executes "sh /etc/netstart if".

Benefits:reboot safe config
easy to write Ansible tasks and templatesDrawback:revealed bugs (carp) ans shortcomings (ospfd)

Ansible - Tunnel configuration

```
# IP addresses for tunnels 192.168.1.0 - 192.168.3.255
# -> max. 1024 IP's, max. 512 Tunnels
tun4: "192.168."
tun6: "2001:db8:fff::"
# VPN Concentrator (HO) must be mentioned first !
magictunnel:
  0:
    peer1: rock
    peer2: qw-br47
    key: "{{ vault_ipsec_key_0 }}"
  1:
    peerl: roll
    peer2: qw-br47
    key: "{{ vault_ipsec_key_1 }}"
                  - name: configure gif for SPOKE
                    template:
                      src=hostname.gif.spoke.j2
                      dest=/etc/hostname.gif{{ item.key }}
                      owner=root
                      group=wheel
                      mode=0640
                    with_dict: '{{ magictunnel }}'
                    when: "{{ inventory_hostname_short == item.value.peer2 lower }}"
                    register: gif task spoke
                    notify: activate interface config spoke
```

OS Upgrade

• Upgrade with bsd.rd not an option (no remote access to console).

- Ansible playbook for upgrading
 - Delete old binpatches
 - Copy install sets to target
 - Copy script which performs the actual upgrade
 - Copy script for cleanups after the upgrade
- Login and execute upgrade script (does reboot the box).
- Wait 2 min and login again. Execute cleanup script.

Local Originating UDP Traffic

UDP traffic originating local on the VPN gateway might be sent out on the wrong interface after a route change.

Example:

- Internet connection down
- OSPF adjacency down, right via tunnel gone
- DHCP requests now forwarding using the default route.
- Route via tunnel learned again: traffic does not shift back to tunnel.

Affected services:

- syslog
- ntp
- netflow
- dhcp relay

Workarounds

Syslog

Use TCP instead of UDP.

Other services

A script monitors the routing socket and act upon route changes (simplified):

Could we use an tool similar to ifstated but for route messages?

Filesystem check

OpenBSD does "fsck -p" during boot if needed.

But we have no physical access to remote routers!

```
- name: fix fsck at reboot
  replace:
    dest=/etc/rc
    regexp='fsck -p'
    replace='fsck -y
```


PC Engines APU2

Gives us a bit more than 100Mb/s with AES128-GCM (measured with OpenBSD 5.9)

HP DL360

Used for OpenBSD in the data center when not a VM. Because it's the company standard. OpenBSD runs fine on that hardware.

Conclusion

- This setup is now in production for 8 branch offices.
- It's not rocket sience just a combination of available toold.
- We are now fast with rolling out a new office.
- So far we are happy with it!

